Saddlepoint Approximations for Affine Jump-Diffusion Models

نویسندگان

  • Paul Glasserman
  • Kyoung-Kuk Kim
چکیده

Affine jump-diffusion (AJD) processes constitute a large and widely used class of continuoustime asset pricing models that balance tractability and flexibility in matching market data. The prices of e.g., bonds, options, and other assets in AJD models are given by extended pricing transforms that have an exponential-affine form; these transforms have been characterized in great generality by Duffie, Pan and Singleton [28]. Calculating model prices requires inversion of these transforms, and this has limited the application of AJD models to the comparatively small subclass for which the transforms are available in closed form. This article seeks to widen the scope of AJD models amenable to practical application through approximate transform inversion techniques. More specifically, we develop the use of saddlepoint approximations for AJD models. These approximations facilitate the calculation of prices in AJD models whose transforms are not available explicitly. We derive and test several alternative saddlepoint approximations and find that they produce accurate prices over a wide range of parameters. JEL classification: C13; C32; C49

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jump-Diffusion Processes and Affine Term Structure Models: Additional Closed-Form Approximate Solutions, Distributional Assumptions for Jumps, and Parameter Estimates

Affine term structure models in which the short rate follows a jump-diffusion process are difficult to solve, and the parameters of such models are hard to estimate. Without analytical answers to the partial difference differential equation (PDDE) for bond prices implied by jumpdiffusion processes, one must find a numerical solution to the PDDE or exactly solve an approximate PDDE. Although the...

متن کامل

Option Pricing on Commodity Prices Using Jump Diffusion Models

In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...

متن کامل

Jump-Diffusion Models for Asset Pricing in Financial Engineering

In this survey we shall focus on the following issues related to jump-diffusion models for asset pricing in financial engineering. (1) The controversy over tailweight of distributions. (2) Identifying a risk-neutral pricing measure by using the rational expectations equilibrium. (3) Using Laplace transforms to pricing options, including European call/put options, path-dependent options, such as...

متن کامل

Linear-Quadratic Jump-Diffusion Modeling with Application to Stochastic Volatility

We aim at accommodating the existing affine jump-diffusion and quadratic models under the same roof, namely the linear-quadratic jump-diffusion (LQJD) class. We give a complete characterization of the dynamics of this class of models by stating explicitly a list of structural constraints, and compute standard and extended transforms relevant to asset pricing. We show that the LQJD class can be ...

متن کامل

Implementation of saddlepoint approximations in resampling problems

In many situations saddlepoint approximations can replace the Monte Carlo simulation typically used to nd the bootstrap distribution of a statistic. We explain how bootstrap and permutation distributions can be expressed as conditional distributions and how methods for linear programming and for tting generalized linear models can be used to nd saddlepoint approximations to these distributions....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008